Акселерометры компании Meggitt: решения для задач любой сложности
Пьезоэлектрические акселерометры
Пьезоэлектрические акселерометры широко известны благодаря своей надежности, долговечности, высокому значению среднего времени наработки на отказ и возможности работать в условиях экстремальных температур. Для преобразования высокоимпедансного сигнала заряда акселерометра в низкоимпедансный выходной сигнал напряжения требуется соответствующая электроника, например трехканальный преобразователь сигнала 133 компании Meggitt или серия усилителей 2771C. Линейка пьезоэлектрических акселерометров Meggitt представлена широким набором моделей, отличающихся размерами, характеристиками и конфигурацией, что позволяет выбрать решение для измерения вибраций и ударов на любом объекте, будь то самолет, космический корабль или спутник, и для любых условий эксплуатации, в частности для сверхнизких и сверхвысоких температур или радиационных воздействий.
Пьезоэлектрический акселерометр представляет собой механическую систему с одной степенью свободы, совершающую вынужденные колебания под влиянием силы, действующей со стороны объекта. Чувствительный элемент пьезоакселерометра состоит из массы, прикрепленной посредством пьезоэлектрического элемента к основанию таким образом, что при возникновении вибраций или ударов основания возникает сила реакции массы, вызывающая деформацию пьезоэлемента и генерирующая в нем заряд, пропорциональный величине виброускорения. При этом существуют различные типы конструкции чувствительного элемента, которые позволяют добиться преимущества в тех или иных областях применения. Например, пьезоакселерометры компрессионного типа (рис. 1), где пьезоэлемент работает на растяжение-сжатие, идеально подходят для измерения малых величин виброускорения, поскольку такая конструкция позволяет получить высокую чувствительность. Конструкция пьезоакселерометров сдвигового типа, где пьезоэлемент работает на сдвиг, дает возможность получить малые габариты и массу прибора, что позволяет использовать их для измерений на объектах с малой массой и габаритами. Бесспорное преимущество пьезоакселерометров такого типа — возможность максимально развязать чувствительный элемент от основания и тем самым существенно снизить передачу механических напряжений основания на чувствительный элемент и температурные погрешности. Полоса пропускания пьезоакселерометров при помощи электроники может быть подстроена под необходимую полосу частот, что помогает, в частности, избавиться от появления в выходном сигнале колебаний на частотах, соответствующих собственным частотам чувствительного элемента акселерометра.
Другая особенность пьезоэлектрических акселерометров заключается в их применении при чрезвычайно широком диапазоне температур — от криогенных до экстремально высоких, например внутри газотурбинного двигателя (рис. 2). На сегодня линейка пьезоакселерометров компании Meggitt содержит широкий спектр моделей различных размеров и формы, от миниатюрных моделей для тестирования мелкой электроники и печатных плат до пьезоакселерометров больших размеров, предназначенных для сейсмических измерений.
Пьезоэлектрические датчики давления и микрофоны
Помимо пьезоэлектрических акселерометров, в линейке продукции компании Meggitt присутствуют датчики динамического давления и микрофоны, построенные по схожему принципу. Линейка пьезоэлектрических датчиков динамического давления разработана таким образом, что позволяет прибору стабильно работать в условиях вибраций и высоких температур с хорошей температурной стабильностью вплоть до +538 °C. Это дает возможность применять датчики в жестких условиях эксплуатации — для проведения измерений в камере сгорания, на испытательных стендах для двигателей, в аэродинамических трубах и двигателях и т.?д. Пьезоэлектрические микрофоны предназначены для измерения параметров высокоинтенсивного акустического шума и очень малых флуктуаций давления. Они нечувствительны к изменениям высоты и вибрациям, а их конструкция предусматривает эксплуатацию в широком диапазоне температур.
Пьезоакселерометры со встроенной электроникой (Isotron)
Акселерометры Isotron являются теми же самыми пьезоэлектрическими акселерометрами, но дополнительно оснащенными усилителем заряда для преобразования сигнала заряда акселерометра в низкоимпедансный выходной сигнал напряжения, что избавляет от необходимости применять внешний усилитель. Такое решение снижает остроту проблем, связанных с передачей сигнала по кабелю на большие расстояния и зашумлением сигнала, но ограничивает диапазон рабочих температур и делает датчик более чувствительным к электростатическому разряду. Электроника акселерометров Isotron соответствует общепринятым стандартам, что разрешает применять их не только с анализаторами и системами сбора данных, доступными у компании Meggitt, но и с любыми другими.
Несмотря на указанные особенности, пьезоакселерометры со встроенной электроникой очень широко распространены в качестве акселерометров как общего, так и специального назначения в отсутствие экстремальных условий окружающей среды. Линейка акселерометров Isotron компании Meggitt представлена широким модельным рядом решений различного размера и формы, с разной чувствительностью и диапазоном измерения (рис. 3, 4). Ряд разработок компании Meggitt в этой области является уникальным, например, сверхминиатюрные модели с полосой пропускания 30 кГц или сверхчувствительные модели для измерения сейсмических колебаний, или модели с расширенным температурным диапазоном, превышающим принятые индустриальные стандарты для акселерометров со встроенной электроникой.
Пьезорезистивные акселерометры
Пьезорезистивные акселерометры — идеальный вариант для измерения ударов, особенно большой величины. Они очень часто используются при проведении краш-тестов автомобилей, тестов на удары и падения грузов в упаковке, испытаниях оружия. Такие акселерометры изготавливаются методами микромеханики и представляют собой подвижную массу на упругом подвесе с пьезорезистивными элементами, соединенными в мостовую схему (рис. 5). При возникновении ускорения основания подвижная масса начинает отклоняться от своего нейтрального положения, вызывая появление механических напряжений в пьезорезисторах, что приводит к изменению их сопротивления, разбалансировке моста и появлению напряжения в диагонали моста, пропорционального измеряемому ускорению. В зависимости от назначения в некоторых акселерометрах предусмотрено большое демпфирование для предотвращения их ухода в насыщение, в то время как в других, наоборот, от демпфирования стараются избавиться для повышения полосы пропускания акселерометров. Пьезорезистивные акслерометры обладают высоким соотношением сигнал-шум, температурным диапазоном –20…+120 °C, а возможность измерения постоянных ускорений позволяет применять их для определения плавно нарастающих ускорений, в том числе в краш-тестах. Линейка пьезорезистивных акселерометров компании Meggitt предусматривает различные варианты корпусов с различными габаритами, что делает легким и удобным выбор решений для конкретной задачи (рис. 6).
Пьезорезистивные датчики давления
Помимо линейки пьезорезистивных акселерометров, компания Meggitt предлагает линейку пьезорезистивных датчиков давления, реализованную на основе той же технологии: на чувствительном элементе в виде мембраны, изготовленной методами микромеханики, расположены пьезорезистивные элементы, соединенные в мостовую схему. Такие датчики отличаются широкой полосой пропускания, хорошей чувствительностью, линейностью и малым гистерезисом и могут применяться для измерения динамического и статического давления при проведении испытаний и измерений в авиакосмической отрасли, автомобильной промышленности, машиностроении и прочих областях (рис. 7).
Емкостные акселерометры
Акселерометры емкостного типа компании Meggitt, как и пьезорезистивные акселерометры, изготавливаются методами МЭМС-технологии, но существенно отличаются по конструкции и характеристикам. Такие акселерометры представляют собой структуру типа «сандвич», где чувствительный элемент в виде подвижной массы, связанной с рамкой посредством упругого подвеса, размещается между двумя ответными частями, образуя дифференциальную емкостную структуру (рис. 8). При наличии ускорения основания подвижная масса отклоняется от своего нейтрального положения, и с дифференциального емкостного датчика перемещения поступает сигнал, пропорциональный измеряемому ускорению.
Акселерометры емкостного типа, как правило, применяются для измерения постоянных ускорений и вибраций в относительно узкой полосе частот, в частности для определения параметров движения подвижных объектов, проведения динамических испытаний, систем мониторинга. Наличие газового демпфирования и ограничителей отклонения подвижной массы позволят акселерометрам сохранять свою работоспособность даже при наличии ударов и вибраций. В совокупности с интегрированной электроникой удается получить акселерометры со стабильными и хорошими точностными и динамическими характеристиками и температурным диапазоном –55…+125 °C (рис. 9).
Кроме датчиков, описанных выше, компания Meggitt предлагает оборудование и дополнительные аксессуары, которые используются вместе с датчиками для построения системы сбора данных и решения задач испытания и измерения. К таким приборам относятся всевозможные усилители и преобразователи сигналов, начиная от портативных устройств и заканчивая стационарными лабораторными вариантами; возбудители колебаний для структурного анализа конструкций, от электромагнитных низкочастотных моделей до пьезоэлектрических высокочастотных возбудителей; модальные молотки, а также широкий спектр различных кабелей и соединителей, включающий малошумящие варианты и высокотемпературные жесткие кабели, и прочие аксессуары для акселерометров и измерительных систем.
В линейке датчиков Meggitt присутствуют и «умные» модели датчиков iTEDS со встроенной памятью, соответствующие стандарту IEEE 1421.4. Встроенная память предназначена для хранения серийного номера датчика и индивидуальных калибровочных данных, что позволяет быстро настроить измерительную систему и при этом избежать ошибок.
Хотелось бы уделить особое внимание основным характеристикам виброакселерометров, о которых следует помнить при выборе той или иной модели. Как правило, выбор стоит начинать с определения требуемой чувствительности акселерометра, максимальной измеряемой частоты вибрации, которая зависит от собственной частоты акселерометра, и его массы — от этих трех ключевых взаимосвязанных характеристик зависит тип используемого акселерометра. Каждая конструктивная схема (например, пьезоакселерометры компрессионного или сдвигового типа) обладает присущей только ей чувствительностью. Большая чувствительность схемы позволяет получить при одной и той же величине чувствительности виброакселерометр с меньшей массой и габаритами и, соответственно, с большей собственной частотой и полосой пропускания. Очевидно, что увеличение массы и размеров акселерометра в любой конструктивной схеме приведет к увеличению чувствительности прибора и одновременному снижению собственной частоты и полосы пропускания.
Выбор массы акселерометра зависит от массы конструкции или ее элементов — чем больше масса акселерометра приближается к величине массы объекта, чьи колебания необходимо измерять, тем больше сам акселерометр будет влиять на эти колебания и на частотные характеристики конструкции в целом. В связи с этим массу акселерометра желательно выбирать таким образом, чтобы она составляла не более 5% от массы исследуемого элемента.
Верхняя частота полосы пропускания, как уже упоминалось, определяется собственной частотой акселерометра и его способом крепления. В случае хорошего жесткого крепления АЧХ является практически прямой вплоть до частоты, соответствующей 20% от собственной частоты. При помощи схем компенсации сигнала в электронике и его фильтрации можно увеличить полосу пропускания до 50% от собственной частоты. Нижняя частота полосы пропускания обычно соответствует значениям в пределах 1–5 Гц и определяется используемой электроникой.
Помимо указанных характеристик, на первом этапе также надо обратить внимание на диапазон измерения акселерометра, определяющий максимальную величину измеряемого ускорения. Затем можно переходить к точностным и эксплуатационным параметрам, таким как нелинейность выходной характеристики, перекрестная чувствительность, температурный коэффициент изменения масштабного коэффициента, шумовые составляющие, температурный диапазон, и прочим.
В заключение хотелось бы отметить, что в большинстве случаев каждая задача требует индивидуального подхода, и указанная последовательность не является аксиомой. Так, при необходимости проводить испытания в условиях повышенных температур на первое место может выйти диапазон рабочих температур и отодвинуть на второй план прочие характеристики.
Статья опубликована в журнале «Компоненты и технологии» №11’2017.
Здраствуйте. Мне нужное ценовое коммерческое предложение на Акселерометр пьезоэлектрический.
Здравствуйте!
Переслал запрос на поставщика.